
Tales of sentiment driven tails

Jozef Baruník
Cathy Yi-Hsuan Chen
Wolfgang Karl Härdle

Institute of Economic Studies
Charles University in Prague
Ladislaus von Bortkiewicz Chair of Statistics
Humboldt-Universität zu Berlin

http://ies.fsv.cuni.cz
http://lvb.wiwi.hu-berlin.de

http://ies.fsv.cuni.cz
http://lvb.wiwi.hu-berlin.de


Motivation 1-1

“Forget the dot-com boom with its irrational exuberance and the
real estate bubble that was supposed to be invincible: Current
market sentiment eclipses all of that”

Jeff Cox, CNBC, March 1 2017
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Motivation 1-2

Sentiment moves market

John Maynard Keynes
(1936): markets can fluc-
tuate wildly under the
influence of investors’ “an-
imal spirits,” which move
prices in a way unrelated
to fundamentals.
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Motivation 1-3

Sentiment can cause mispricing

Fifty years later...

De Long, Shleifer, Summers, and Waldmann (1990) formalized the
role of investor sentiment in financial markets.
� uninformed noise traders base their decisions on sentiment
I greater mispricing (Stambaugh et al., 2012)
I excess volatility (Dumas et al., 2009)
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Motivation 1-4

“Now, the question is no longer, as it was a few decades ago,
whether investor sentiment affects stock prices, but rather how to
measure investor sentiment and quantify its effects.”

(Baker and Wurgler, 2007)
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Motivation 1-5

News moves markets

� Baker and Wurgler (2007) investor sentiment affects securities
whose valuations are highly subjective

� Large literature Huang et al. (2014), Da et al. (2015), Shefrin
(2007+)

� Zhang et al. (2016) textual sentiment provides incremental
information about future stock reactions
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Motivation 1-6

Is average enough?

� Sentiment affects cross section of returns or volatility
� Grand average is OK for expected payoffs
� Though...
I bear vs. bull markets
I extreme negative vs. positive returns
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Motivation 1-7

Is average man enough?

Contrarians vs. Trend followers
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Motivation 1-8

We already know that we can measure sentiment...

but how to quantify its effect on prices?
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Motivation 1-9

Contribution

� Step forward from classical asset pricing (EU based)
� Provide decision-theoretic foundations of pricing in quantiles
� Link sentiment with quantiles of the return distributions
� Nonlinear dynamic quantile asset pricing model
� Confirm empirically on Panel of 100 US stocks
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Motivation 1-10

Outline

1. Motivation X

2. Theoretical Framework
3. Data Collection
4. Sentiment Projection
5. Calibration of weighting function
6. Quantile Panel Regressions
7. Outlook
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Theoretical Framework 2-1

Classical asset pricing

Investor maximizes utility subject to budget constraint. The FOC
(Euler equation):

EF [M × (1 + R)] = 1, (1)

where M is a pricing kernel (PK), or stochastic discount factor
(SDF), R is the total return on a risky asset with physical
distribution F (R).
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Theoretical Framework 2-2

Probability weighting

Decisions under risk are more sensitive to changes in probability of
events at extremes, Tversky and Kahneman (1992).
Polkovnichenko and Zhao (2013) use the rank-dependent expected
utility (RDEU) U(R) = EF [u(R)g{F (R)}] with PK

M = u′(R)g{F (R)}, (2)

where g{F (R)} = G ′{F (R)} is a probability weighting function.

Euler equation reads as:

EF [u′(R)g{F (R)} (1 + R)] = 1. (3)
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Theoretical Framework 2-3

Figure: Probability weighting function G (v) = exp{− (−β log v)α} with
α = 0.7 and β = 0.6

Tales of sentiment driven tails



Theoretical Framework 2-4

Figure: Probability weighting function G (v) = exp{− (−β log v)α} = v0.6

(α = 1 and β = 0.6)
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Theoretical Framework 2-5

A route towards quantile preferences

� X is preferred to Y if there exist utility function U(.) such that

X � Y iff EF [U(X )] ≥ EF [U(Y )] (4)

� Manski (1988), Rostek (2010) look at τ -quantile preferences

X � Y iff Qτ [U(X )] ≥ Qτ [U(Y )] (5)

� Maximising lower quantile is more risk-averse than higher
quantile (example of portfolio), de Castro et al. (2017)
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Theoretical Framework 2-6

Example
Utility function u(x)

def
= x

X =

{
107 with p = 10−6

−1 with q = 1− p
Y =

{
10 with p = 9/10
−1 with q = 1− p

X �E Y since E[X ] = 9 + 10−6 and E[Y ] = 8 + 9/10

Qτ (X )
def
= inf{α ∈ R : P(X ≤ α) ≥ τ}

X


≡Qτ

Y for τ ≤ 1/10
�Qτ

Y for 1/10 < τ ≤ 1− 10−6

�Qτ
Y for τ > 1− 10−6
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Theoretical Framework 2-7

A route towards a (dynamic) quantile model

Instead of classical preferences, look at an agent maximizing her
stream of the future quantile utilities.
For a given τ ∈ (0, 1), Euler equation reads:

Qτ
[
u′(R)g(v) (1 + R)

]
= 1, (6)

where v = F (R),

G (·) : [0, 1]→ [0, 1] probability weighting fct and

g(·) = G
′
(·).

Can we relate g(·) to sentiment?
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Theoretical Framework 2-8

Probability weighting function and sentiment

Prelec (1998) weighting function:

G (v) = G (α, β; v) = exp{− (−β log v)α} (7)

α, β parameters govern the shape of G (·).
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Theoretical Framework 2-9

Link sentiment St to βt :

βt = β(St , ρ) = exp{−ρ(S−1
t − 1)} − 1 (8)

Figure: β versus St for ρ = −0.1 and ρ = −0.05
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Theoretical Framework 2-10

Fix α = 1 to impose monotonicity and compute vt = (rankRt)/n

G (vt ,St) = v
β(St ,ρ)
t = v

exp{−ρ(S−1
t −1)}−1

t . (9)
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Theoretical Framework 2-11

A dynamic quantile model with sentiments

Equation (6) is beneficial, since it can be log-linearized as for a
general random variable W , Qτ [log(W )] = log(Qτ [W ]).
Hence

Qτ

[
u′(Rt)g(vt , St) (1 + Rt+1)

]
= 1 (10)

considering power utility function:

Qτ [−γ log(Rt) + log{g(vt ,St)}+ log(1 + Rt+1)] = 0. (11)

One can estimate the parameter driving g(vt ,St) with nonlinear
quantile regression.

How to estimate sentiment St?

Tales of sentiment driven tails



Data Collection 3-1

Data

� Panel of 100 most liquid constituents of S&P 500 stocks
� Sentiment variables: distilled from Nasdaq articles

Nasdaq Articles

� Terms of Service permit web scraping
� Currently > 580k articles between October 2009 and January

2017

� Data available at RDC
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Data Collection 3-2

There is a lot of news...
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Data Collection 3-3

Dimensions of News

� Source of news
I Official channel: government, federal reserve bank/central

bank, financial institutions
I Internet: blog, social media, message board

� Content of news: signal vs. noise
� Type of news
I Scheduled vs. non-scheduled
I Expected vs. unexpected
I Specific-event vs. continuous news flows
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Data Collection 3-4

The Power of Words: Textual Analytics

� Sentiment analysis
I Lexica projection : positive, neutral and negative
I Machine learning : text classification
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Data Collection 3-5

Unsupervised Projection

O gentle doves, O turtle-doves,
,

And all the birds that be,
The lentils that in ashes lie
Come and pick up for me!

The good must be put in the dish,
,

The bad you may eat if you wish.
/

,
,2
/1

Figure: Example of Text Numerisization

� Many texts are numerisized via lexical projection
� Goal: Accurate values for positive and negative sentiment

Examples
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Data Collection 3-6

Supervised Projection

We use supervised projection (Zhang et al., JBES, 2016)
� Training data: Financial Phrase Bank by Malo et al. (2014)

I Sentence-level annotation of financial news
I Manual annotation of 5,000 sentences by 16 annotators: to

incorporate human knowledge
I Example: “profit” with different semantic orientations

• Neutral in “profit was 1 million”
• Positive in “profit increased from last year”
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Data Collection 3-7

How to gather Sentiment Variables?

Articles Scraping NLP Projection Sentiment

URL

Author

Symbol

Date

Text

Nasdaq Articles

RDC

Token

Negation

POS

Lemmata

Unsupervised

BL

LM

Supervised

SM
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Sentiment Projection 4-1

Lexicon-based Sentiment

Consider document i , positive sentiment Posi , positive lexicon
entries Wj (j = 1, . . . , J) and count frequency of those entries wj :

Posi = n−1
i

J∑
j=1

I
(
Wj ∈ L

)
wj (12)

with ni : number of words in document i (e.g. sentence)

Equivalent calculation of negative sentiment Negi
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Sentiment Projection 4-2

Sentence-level Polarity

Poli =


1, if Posi > Negi

0, if Posi = Negi

−1, if Posi < Negi

(13)

for sentence i

� Measure sentiment on sentence level
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Sentiment Projection 4-3

Regularized Linear Models (RLM)

� Training data (X1, y1) . . . (Xn, yn) with Xi ∈ Rp and
yi ∈ {−1, 1}

� Linear scoring function s(X ) = β>X with β ∈ Rp

Example

Regularized training error:

n−1
n∑

i=1

L{yi , s(X )}︸ ︷︷ ︸
Loss Function

+ λR(β)︸ ︷︷ ︸
Regularization Term

(14)

with hyperparameter λ ≥ 0
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Sentiment Projection 4-4

RLM Estimation

� Optimize via Stochastic Gradient Descent More

� 5-fold cross validation More

� Oversampling More

� Choice of: L(·),R(·), λ, X (n-gram range, features) . . .
� Three categories: one vs. all sub-models
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Sentiment Projection 4-5

Bullishness

B = log

{
1 + n−1∑n

j=1 I
(
Polj = 1

)
1 + n−1∑n

j=1 I
(
Polj = −1

)} (15)

by Antweiler and Frank (JF, 2004) with j = 1, . . . , n sentences in
document.

� Bi ,t accounts for bullishness of company i on day t

� Consider BNi ,t = I
(
Bi ,t < 0

)
Bi ,t
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Calibration of weighting function 5-1

Calibration of probability weighting functions

Estimate ρτ using nonlinear quantile regressions.
Employ power utility u(R) = R1−γ/(1− γ).

Qτ [−γ log(Rt) + log{g(vt ,St)}+ log(1 + Rt+1)] = 0, (16)

where

g(v ,S) = G ′(1, β; v) = βvβ−1,

β = β(S , ρ) = exp{−ρ(S−1 − 1)} − 1.
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Calibration of weighting function 5-2

Calibration of probability weighting functions

Expect ρτ to differ across τ since sentiment distorts beliefs of a
τ -quantile preference maker.

Figure: Variation over firms for γ = 20
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Calibration of weighting function 5-3

Calibration of probability weighting functions

Message: ρ bigger for smaller τ
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Calibration of weighting function 5-4

Calibration of probability weighting functions

Higher values of ρτ in the left tail indicate that large negative
sentiment is connected to higher overweighting of the PK.
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Quantile Panel Regressions 6-1

Empirical Results: Pricing tails with Sentiment

� We propose a dynamic quantile asset pricing model

Qτ

[
M̃t × (1 + Rt+1) + 1

]
= 0

� with M̃t = exp(−ατ − βS ,τSt − FF>t βFF ,τ − X>t βXt ,τ ),

FF=Fama French 5 factors

Xt - control variables including idiosyncratic factors
� Factors are proxy for aggregate consumption
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Quantile Panel Regressions 6-2

Empirical Results: Pricing tails with Sentiment

After log-linearization, we arrive to a simple linear model

Qτ

[
log(1+Rt+1)−ατ −βS,τSt−FF>t βFF ,τ −X>t βXt ,τ

]
= 0 (17)

implying

Qτ

[
log(1 + Rt+1)

]
= ατ + βS ,τSt + FF>t βFF ,τ + X>t βXt ,τ (18)

with FF Fama-French Factors
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Quantile Panel Regressions 6-3

Empirical Results: Sentiment as factor

� Aggregate market sentiment as possible risk factor.
� Control also for firm-specific sentiment and volatility
� Negative sentiment captures “fear”, related to VIX (Da et al.,

2015)
� Following high investor sentiment, aggregate returns are low

(Baker and Wurgler, 2007)
� Overly optimistic beliefs about future cash flows is not justified

by fundamentals.
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Quantile Panel Regressions 6-4

A dynamic quantile model with sentiment

Linear asset pricing model Fama-French Factors

Qτ (ri ,t+1) = αi ,τ +β1,τBi ,t +β2,τσi ,t +β3,τ |BNt |+FF>t βFF ,τ (19)

with σi ,t Garman & Klass (1980) range-based volatility

|BNt | proxy for St (hence βS from (18) is here β3)
Bi ,t proxy for idiosyncratic sentiment
σi ,t proxy for volatility

Bi ,t , σi ,t control variables, contained in the matrix X in (18).
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Quantile Panel Regressions 6-5

Eq (20) tests if sentiment prices quantiles of the excess asset
returns.

� Coefficients capture marginal effects of pricing factors
� Coefficients varying across τ imply marginal effect
� Coefficients constant over τ : EU works?
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Quantile Panel Regressions 6-6

A dynamic quantile model with sentiment

Linear asset pricing model Fama-French Factors

Qτ (ri ,t+1) = αi ,τ +β1,τBi ,t +β2,τσi ,t +β3,τ |BNt |+FF>t βFF ,τ (20)

with σi ,t - Garman & Klass (1980) range-based volatility .

(20) tests if sentiment prices quantiles of the excess asset returns.

� Coefficients capture marginal effects of pricing factors
� Coefficients varying across τ imply marginal effect
� Coefficients constant over τ : EU works?
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Quantile Panel Regressions 6-7

Results

Estimate (20) via QR
� Panel of 100 most liquid constituents of S&P 500 stocks
� 10 main sectors Details

� Check sentiments across τ

Tales of sentiment driven tails



Quantile Panel Regressions 6-8

Results: Panel of 100 stocks

Figure: Estimates for βi,τ from eq. (20) for τ ∈ (0, 1)

.
Full estimates of eq. (20) Further Graphics
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Quantile Panel Regressions 6-9

Results: Panel of 100 stocks

Figure: Estimates for βi,τ together with box plots showing individual
estimates with univariate individual I=1,. . . ,100 QR estimates
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Quantile Panel Regressions 6-10

Empirical Results

� Tails are strongly influenced
� Sentiment and volatility effects similarly
� βτ 6= 0 for most of the τs
� Asymmetric impact of market sentiment
� Holds even after control for firm specific sentiment
� Increase in negative bullishness has positive effect on right tail,

and negative effect on left tail
� Contrary to literature, factors explain daily data in quantiles
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Quantile Panel Regressions 6-11

Results: Sectors
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Figure: Estimates for βi,τ from eq. (20) for τ ∈ (0, 1)
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Quantile Panel Regressions 6-12

Results: Sectors
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Quantile Panel Regressions 6-13

Results: Sectors
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Quantile Panel Regressions 6-14

Results: Sectors
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Quantile Panel Regressions 6-15

Results: Sectors
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Quantile Panel Regressions 6-16

Results: Sectors
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Quantile Panel Regressions 6-17

Results: Sectors
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Figure: Estimates for βi,τ from eq. (20) for τ ∈ (0, 1)
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Quantile Panel Regressions 6-18

Results: Sectors
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Quantile Panel Regressions 6-19

Results: Sectors
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Quantile Panel Regressions 6-20

Results: Sectors
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Figure: Estimates for βi,τ from eq. (20) for τ ∈ (0, 1)

Full estimates of eq. (20) Further Graphics
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Outlook 7-1

Summary

� Tales of sentiment driven tails
� Dynamic quantile model for asset pricing with sentiment
� Investor sentiment distilled from public news with cross-section

of future return’s quantiles.
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Outlook 7-2

Sentiment moves market

John Maynard Keynes
(1936): markets can fluc-
tuate wildly under the
influence of investors’ “an-
imal spirits,” which move
prices in a way unrelated
to fundamentals.
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Appendix 9-1

Tagging Example - BL
... McDonald’s has an obesity problem that continues to get worse.
And that’s nothing to do with the food itself, but rather the huge menus
that can now double as medieval fortification. For perspective, the
chain’s menu has grown 70% since 2007. And while more offerings might
seem like a good thing, large menus result in slower service and more
flare-ups between franchisees and the corporation.
Bloated menus raise inventory costs for smaller franchisees and lead to
lower profit margins. The McDonald’s corporate franchise fee is based
upon sales instead of profits, making it a smaller concern for the
company overall. ...

3 positive words and 5 negative words

TXTMcDbm
Article source

Tales of sentiment driven tails
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Appendix 9-2

Tagging Example - LM
... McDonald’s has an obesity problem that continues to get worse.
And that’s nothing to do with the food itself, but rather the huge menus
that can now double as medieval fortification. For perspective, the
chain’s menu has grown 70% since 2007. And while more offerings might
seem like a good thing, large menus result in slower service and more
flare-ups between franchisees and the corporation.
Bloated menus raise inventory costs for smaller franchisees and lead to
lower profit margins. The McDonald’s corporate franchise fee is based
upon sales instead of profits, making it a smaller concern for the
company overall. ...

1 positive word and 4 negative words

TXTMcDlm
Back
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Appendix 9-3

Web Scraping

� Databases to buy?
� Automatically extract information from web pages
� Transform unstructured data (HTML) to structured data
� Use HTML tree structure to parse web page
� Legal issues
I Websites protected by copyright law
I Prohibition of web scraping possible
I Comply to Terms of Service (TOS)

Back
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Natural Language Processing (NLP)

� Text is unstructured data with implicit structure
I Text, sentences, words, characters
I Nouns, verbs, adjectives, ..
I Grammar

� Transform implicit text structure into explicit structure
� Reduce text variation for further analysis
� Python Natural Language Toolkit (NLTK)
� TXTnlp

Back
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Appendix 9-5

Tokenization

� String
”McDonald’s has its work cut out for it. Not only are sales

falling in the U.S., but the company is now experiencing

problems abroad.”

� Sentences
”McDonald’s has its work cut out for it.”,

”Not only are sales falling in the U.S., but the company is

now experiencing problems abroad.”

� Words
”McDonald”, ”’s”, ”has”, ”its”, ”work”, ”cut”, ”out” ...
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Negation Handling

� “not good” 6= “good”
� Reverse polarity of word if negation word is nearby
� Negation words

"n’t", "not", "never", "no", "neither", "nor", "none"
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Part of Speech Tagging (POS)

� Grammatical tagging of words
I dogs - noun, plural (NNS)
I saw - verb, past tense (VBD) or noun, singular

(NN)

� Penn Treebank POS tags
� Stochastic model or rule-based

Tales of sentiment driven tails

http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html


Appendix 9-8

Lemmatization

� Determine canonical form of word
I dogs - dog
I saw (verb) - see and saw (noun) - saw

� Reduces dimension of text
� Takes POS into account
I Porter stemmer: saw (verb and noun) - saw

Back
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Loss Functions for Classification

� Logistic: Logit

L{y , s(X )} = log(2)−1 log[1 + exp{−s(X )y}] (21)

� Hinge: Support Vector Machines
L{y , s(X )} = max{0, 1− s(X )y} (22)

Back
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Regularization Term

� L2 norm

R(β) = 2−1
p∑

i=1

β2
i (23)

� L1 norm

R(β) =

p∑
i=1

|βi | (24)

Back

Tales of sentiment driven tails



Appendix 9-11

RLM Example
Sentence 1: “The profit of Apple increased.”
Sentence 2: “The profit of the company decreased.”

y = (1,−1) (25) X =



X1 X2

the 1 2
profit 1 1

of 1 1
Apple 1 0

increased 1 0
company 0 1
decreased 0 1


(26)

Back
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k-fold Cross Validation (CV)

� Partition data into k complementary subsets

� No loss of information as in conventional validation

� Stratified CV: equally distributed response variable in each fold

Data

Fold 1

Test

Train

Fold 2

Train

Test

Train

Fold 3

Train

Test

Validation

Test

Test

Test

Figure: 3-fold Cross Validation
Back
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Oversampling

� Härdle (2009) Trade-off between Type I and Type 2 error in
classification Error types

� Balance size of neutral sentences and ones with polarity in
sample

� Duplicate sentences within folds of stratified cross validation
until the sample is balanced

Back
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Classification Error Rates

� Type I error rate = FP/(FP + TN)
� Type II error rate = FN/(FN + TP)
� Total error rate = (FN + FP)/(TP + TN + FP + FN)

with TP as true positive, TN as true negative, FP as false positive
and FN as false negative.

Back
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Stochastic Gradient Descent (SGD)

� Approximately minimize loss function

L(θ) =
n∑

i=1

Li (θ) (27)

� Iteratively update

θi = θi−1 − η
∂Li (θ)

∂θ
(28)
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SGD Algorithm

1. Choose learning rate η
2. Shuffle data
3. For i = 1, . . . , n, do:

θi = θi−1 − η
∂Li (θ)
∂θ

Repeat 2 and 3 until approximate minimum obtained.

Tales of sentiment driven tails



Appendix 9-17

SGD Example

X ∼ N(µ, σ) and x1, ..., xn as randomly drawn sample

min
θ

n−1
n∑

i=1

(θ − xi )
2

Update step
θi = θi−1 − 2η(θi−1 − xi )

Optimal gain

Set 2η = 1/i and obtain θn = x̄ with x̄ as sample mean.
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SGD Example ctd

Figure: Estimate Mean via SGD, xt ∼ N(5, 1)

η ∈ {1/t, 1/1000, 1/1500, 1/2000, 1/2500} TXTSGD
Back
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Evaluation Supervised Learning

True

Pred
-1 0 1 Total

-1 1,983 298 254 2,535

0 96 2,134 305 2,535

1 105 469 1,961 2,535

Total 2,184 2,901 2,520 7,605

Table: Confusion Matrix - Supervised Learning with Oversampling

Back
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Abbreviations

Sector Abbreviation
Consumer Discretionary CD
Consumer Staples CS
Energy EN
Financials FI
Health Care HC
Industrials IN
Information Technology IT
Materials MA
Telecommunication TE
Utilities UT

Table: Sector Abbreviations

back
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Fama-French 5 factors

FF1 - the Mkt factor: excess return on the market index

FF2 - the SMB factor: (Small Minus Big) the average return on
the nine small-stock portfolios minus that on the nine big-stock
portfolios.

FF3 - the HML factor: (High Minus Low) the average return on
the two value-stock portfolios minus that on the two growth-stock
portfolios

Back
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Fama-French 5 factors cont.

FF4 - the RMW factor: (Robust Minus Weak) the average return
on the two robust operating profitability portfolios minus that on
the two weak operating profitability portfolios

FF5 - the CMA factor: (Conservative Minus Aggressive) the
average return on the two conservative investment portfolios minus
that on the two aggressive investment portfolios

Back
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Garman & Klass range-based volatility

σi ,t = 0.511(u − d)2 − 0.019{c(u + d)− 2ud} − 0.838c2 (29)

with u = log(PH
i ,t)− log(PL

i ,t)

d = log(PL
i ,t)− log(PO

i ,t)

c = log(PC
i ,t)− log(PO

i ,t),

where the PH
i ,t ,P

L
i ,t ,P

O
i ,t ,P

C
i ,t are the daily highest, lowest, opening

and closing stock prices.

Back
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Results: Panel of 100 stocks
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Results: Sectors
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Results: Sectors
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Results: Sectors
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Results: Sectors
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Results: Sectors
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Results: Sectors
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

α

0.05 0.2 0.4 0.6 0.8 0.95

Sentiment

−
2

−
1

0
1

2

α

0.05 0.2 0.4 0.6 0.8 0.95

Volatility

−
40

−
20

0
20

40
60

α

0.05 0.2 0.4 0.6 0.8 0.95

|SM_neg| index

−
0.

1
0.

0
0.

1
0.

2

α

0.05 0.2 0.4 0.6 0.8 0.95

FF_1

−
0.

1
0.

0
0.

1
0.

2

0.05 0.2 0.4 0.6 0.8 0.95

FF_2

0.
0

0.
2

0.
4

0.
6

0.05 0.2 0.4 0.6 0.8 0.95

FF_3

0.
0

0.
2

0.
4

0.
6

0.05 0.2 0.4 0.6 0.8 0.95

FF_4

−
0.

8
−

0.
4

0.
0

0.
2

0.
4

0.05 0.2 0.4 0.6 0.8 0.95

FF_5

Energy

Back

Tales of sentiment driven tails



Appendix 9-31

Results: Sectors
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Results: Sectors
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Results: Sectors
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Results: Sectors
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